

Three-Terminal Adjustable Output Positive Voltage Regulator

The LM317L is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 100 mA over an output voltage range of 1.2 V to 37 V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it employs internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof.

The LM317L serves a wide variety of applications including local, on card regulation. This device can also be used to make a programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317L can be used as a precision current regulator.

- Output Current in Excess of 100 mA
- Output Adjustable Between 1.2 V and 37 V
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe–Area Compensation
- Floating Operation for High Voltage Applications
- Standard 3-Lead Transistor Package
- Eliminates Stocking Many Fixed Voltages

Simplified Application V_{out} LM317L R₁ 240 Adjust * Cin is required if regulator is located an appreciable distance from power supply filter. Co is not needed for stability, however, it does improve transient response. $V_{out} = 1.25 \text{ V} \left(1 + \frac{R_2}{R_1} \right) + I_{Adj} R_2$ Since $I_{\mbox{Adj}}$ is controlled to less than 100 $\mu\mbox{A},$ the error associated with this term is negligible in most applications.

LM317L

LOW CURRENT THREE-TERMINAL ADJUSTABLE POSITIVE **VOLTAGE REGULATOR**

SEMICONDUCTOR TECHNICAL DATA

Z SUFFIX PLASTIC PACKAGE CASE 29

2. Vout 3. V_{in}

Pin 1. V_{in} 2. V_{out} 3. Vout 4. Adjust 5. N.C.

6. Vout 7. V_{out} 8. N.C.

* SOP-8 is an internally modified SO-8 package. Pins 2, 3, 6 and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOP-8 conforms to all external dimensions of the standard SO-8 package.

ORDERING INFORMATION

Device	Operating Temperature Range	Package
LM317LD	T _{.1} = 0° to +125°C	SOP-8
LM317LZ	11 = 0 10 +125 C	Plastic
LM317LBD	$T_{.1} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	SOP-8
LM317LBZ	11 = -40 10 + 125 C	Plastic

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Input-Output Voltage Differential	VI-VO	40	Vdc
Power Dissipation	PD	Internally Limited	W
Operating Junction Temperature Range	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS ($V_I - V_O = 5.0 \text{ V}$; $I_O = 40 \text{ mA}$; $T_J = T_{low}$ to T_{high} [Note 1]; I_{max} and P_{max} [Note 2]; unless otherwise noted.)

			L	_M317L, L	В	
Characteristics	Figure	Symbol	Min	Тур	Max	Unit
Line Regulation (Note 3) $T_A = 25^{\circ}C, 3.0 \text{ V} \le V_I - V_O \le 40 \text{ V}$	1	Regline	-	0.01	0.04	%/V
Load Regulation (Note 3), $T_A = 25^{\circ}C$ 10 mA \leq I _O \leq I _{max} – LM317L $V_O \leq 5.0 \text{ V}$ $V_O \geq 5.0 \text{ V}$	2	Reg _{load}	_ _	5.0 0.1	25 0.5	mV % VO
Adjustment Pin Current	3	l _{Adj}	_	50	100	μА
Adjustment Pin Current Change $2.5 \text{ V} \le \text{V}_I - \text{V}_O \le 40 \text{ V}, \text{P}_D \le \text{P}_{max}$ $10 \text{ mA} \le \text{I}_O \le \text{I}_{max} - \text{LM}317\text{L}$	1, 2	Δl _{Adj}	-	0.2	5.0	μΑ
Reference Voltage $3.0~\text{V} \leq \text{V}_{I} - \text{V}_{O} \leq 40~\text{V},~\text{P}_{D} \leq \text{P}_{max} \\ 10~\text{mA} \leq \text{I}_{O} \leq \text{I}_{max} - \text{LM317L}$	3	V _{ref}	1.20	1.25	1.30	V
Line Regulation (Note 3) 3.0 $V \le V_I - V_O \le 40 \text{ V}$	1	Regline	_	0.02	0.07	%/V
Load Regulation (Note 3) 10 mA \leq I _O \leq I _{max} – LM317L V _O \leq 5.0 V V _O \geq 5.0 V	2	Reg _{load}	_ _	20 0.3	70 1.5	mV % VO
Temperature Stability $(T_{low} \le T_J \le T_{high})$	3	TS	_	0.7	_	% Vo
Minimum Load Current to Maintain Regulation (V _I – V _O = 40 V)	3	I _{Lmin}	_	3.5	10	mA
Maximum Output Current $ \begin{array}{l} V_I - V_O \leq 6.25 \text{ V}, \ P_D \leq P_{max}, \ Z \ Package \\ V_I - V_O \leq 40 \ V, \ P_D \leq P_{max}, \ T_A = 25^{\circ}C, \ Z \ Package \\ \end{array} $	3	I _{max}	100 -	200 20	- -	mA
RMS Noise, % of V_O $T_A = 25^{\circ}C$, 10 Hz \leq f \leq 10 kHz		N	-	0.003	-	% VO
Ripple Rejection (Note 4) $V_O = 1.2 \text{ V}, f = 120 \text{ Hz}$ $C_{Adj} = 10 \mu\text{F}, V_O = 10.0 \text{ V}$	4	RR	60 -	80 80	- -	dB
Long Term Stability, T _J = T _{high} (Note 5) T _A = 25°C for Endpoint Measurements	3	S	-	0.3	1.0	%/1.0 k Hrs.
Thermal Resistance, Junction–to–Case Z Package		R _θ JC	-	83	-	°C/W
Thermal Resistance, Junction–to–Air Z Package		R _θ JA	-	160	_	°C/W

^{4.} CAdj. when used, is connected between the adjustment pin and ground.
5. Since Long-Term Stability cannot be measured on each device before shipment, this specification is an engineering estimate of average stability from lot to lot.

Representative Schematic Diagram

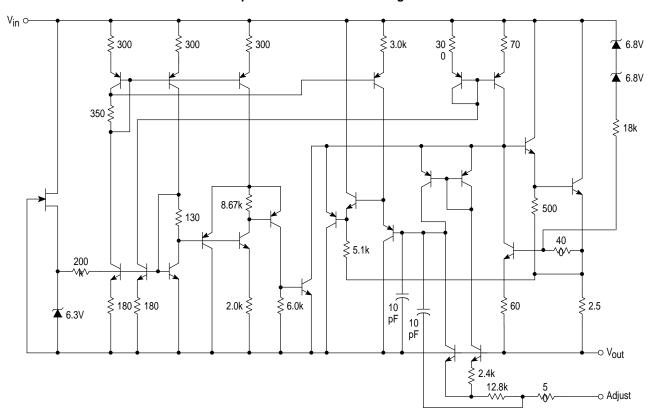


Figure 1. Line Regulation and $\Delta I_{\mbox{Adj}}/\mbox{Line}$ Test Circuit

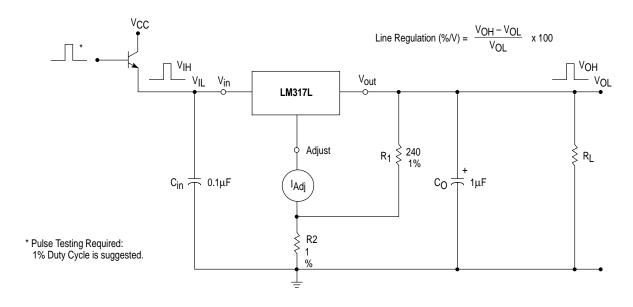


Figure 2. Load Regulation and $\Delta I_{Adi}/Load$ Test Circuit

Load Regulation (mV) = V_O (min Load) $-V_O$ (max Load) V_O (min Load) – V_O (max Load) Load Regulation (% V_O) = V_O (min Load) V_O (min Load) VO (max Load) V_{in}^{\star} V_{in} Vout LM317L ΙL R_L (max Load) $R_1 \geqslant \frac{240}{1\%}$ R_L (min Load) Adjust $C_{in} \stackrel{+}{\mp} 0.1 \mu F$ I_{Adj} R₂ 1% * Pulse Testing Required:

Figure 3. Standard Test Circuit

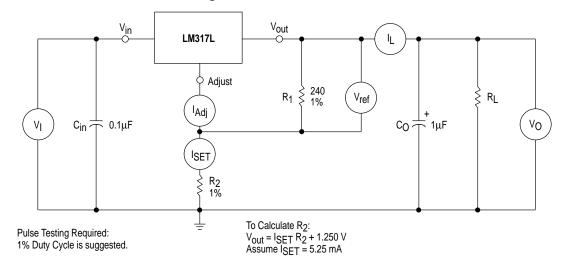
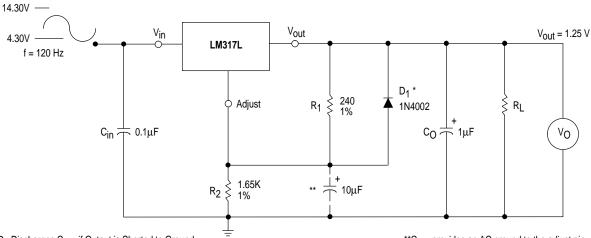
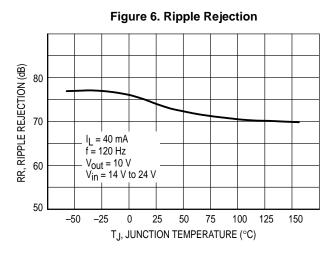
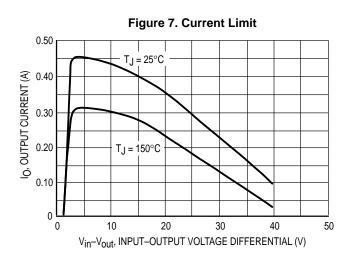
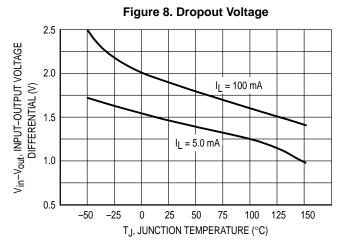



Figure 4. Ripple Rejection Test Circuit




^{*} D₁ Discharges C_{Adj} if Output is Shorted to Ground.


^{*} Pulse Testing Required:1% Duty Cycle is suggested.

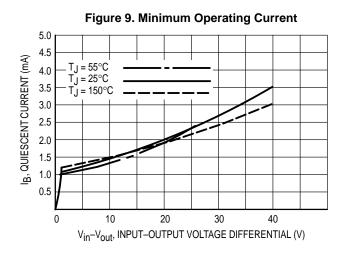
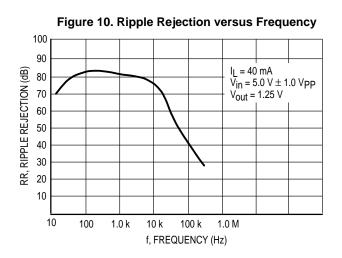
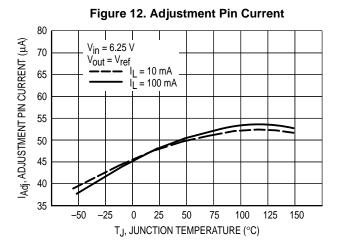
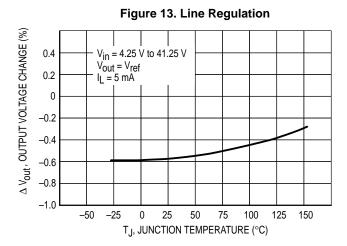
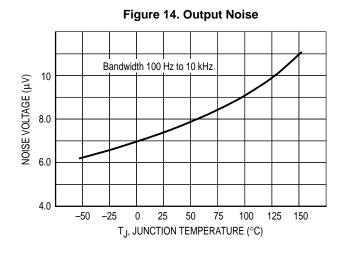
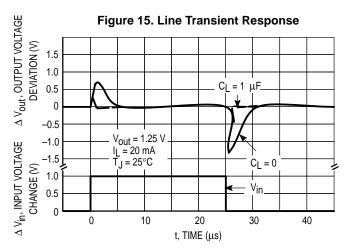
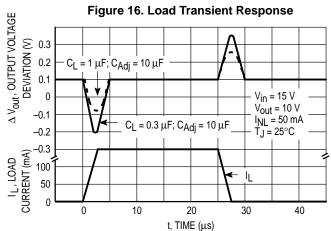

 $^{{}^{\}star\star} C_{\mbox{Adj}}$ provides an AC ground to the adjust pin.

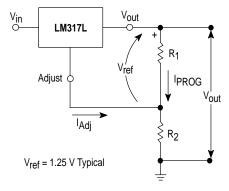
Figure 5. Load Regulation Δ V_{out} OUTPUT VOLTAGE CHANGE (%) 0.4 V_{in} = 45 V $V_{out} = 5.0 \text{ V}$ 0.2 $I_L = 5.0 \text{ mA}$ to 40 mA 0 V_{in} = 10 V -0.4 $V_{out} = 5.0 \text{ V}$ $I_1 = 5.0 \text{ mA} \text{ to } 100 \text{ mA}$ -0.6 -0.8 -1.0-50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C)


Figure 11. Temperature Stability 1.260 V_{ref}, REFERENCE VOLTAGE (V) 1.250 1.240 V_{in} = 4.2 V V_{out} = V_{ref} I_L = 5.0 mA 1.230 1.220 -50 -25 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C)

APPLICATIONS INFORMATION

Basic Circuit Operation


The LM317L is a 3–terminal floating regulator. In operation, the LM317L develops and maintains a nominal 1.25 V reference (V_{ref}) between its output and adjustment terminals. This reference voltage is converted to a programming current (I_{PROG}) by R_1 (see Figure 13), and this constant current flows through R_2 to ground. The regulated output voltage is given by:

$$V_{out} = V_{ref} (1 + \frac{R_2}{R_1}) + I_{Adj} R_2$$

Since the current from the adjustment terminal (I_{Adj}) represents an error term in the equation, the LM317L was designed to control I_{Adj} to less than 100 μA and keep it constant. To do this, all quiescent operating current is returned to the output terminal. This imposes the requirement for a minimum load current. If the load current is less than this minimum, the output voltage will rise.

Since the LM317L is a floating regulator, it is only the voltage differential across the circuit which is important to performance, and operation at high voltages with respect to ground is possible.

Figure 17. Basic Circuit Configuration

Load Regulation

The LM317L is capable of providing extremely good load regulation, but a few precautions are needed to obtain maximum performance. For best performance, the programming resistor (R1) should be connected as close to the regulator as possible to minimize line drops which effectively appear in series with the reference, thereby degrading regulation. The ground end of R2 can be returned near the load ground to provide remote ground sensing and improve load regulation.

External Capacitors

A 0.1 μ F disc or 1.0 μ F tantalum input bypass capacitor (C_{in}) is recommended to reduce the sensitivity to input line impedance.

The adjustment terminal may be bypassed to ground to improve ripple rejection. This capacitor (C_{Adj}) prevents ripple from being amplified as the output voltage is increased. A 10 μ F capacitor should improve ripple rejection about 15 dB at 120 Hz in a 10 V application.

Although the LM317L is stable with no output capacitance, like any feedback circuit, certain values of external capacitance can cause excessive ringing. An output capacitance (C_O) in the form of a 1.0 μ F tantalum or 25 μ F aluminum electrolytic capacitor on the output swamps this effect and insures stability.

Protection Diodes

When external capacitors are used with any IC regulator it is sometimes necessary to add protection diodes to prevent the capacitors from discharging through low current points into the regulator.

Figure 14 shows the LM317L with the recommended protection diodes for output voltages in excess of 25 V or high capacitance values (CO > 10 $\mu\text{F},\,\text{C}_{Adj} > 5.0~\mu\text{F}).$ Diode D1 prevents CO from discharging thru the IC during an input short circuit. Diode D2 protects against capacitor CAdj discharging through the IC during an output short circuit. The combination of diodes D1 and D2 prevents CAdj from discharging through the IC during an input short circuit.

Figure 18. Voltage Regulator with Protection Diodes

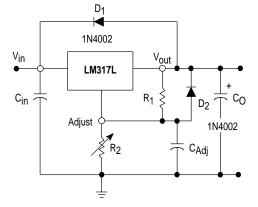


Figure 19. Adjustable Current Limiter

+25V ○— V_{out} ۷o lΟ LM317L 1.25k V_{in} Adjust D1 R_2 1N914 500 D2 * To provide current limiting of $\,$ Io to the system ground, the source of 1N914 the current limiting diode must be tied to a negative voltage below - 7.25 V. 1N5314 $R_2 \ge$ Vss*

$$\label{eq:VO} \begin{split} &V_O < P_{OV} + 1.25 \; V + V_{SS} \\ &I_{Lmin} - I_P < I_O < 100 \; mA - I_P \\ &As \; shown \; O < I_O < 95 \; mA \end{split}$$

Figure 21. Slow Turn-On Regulator

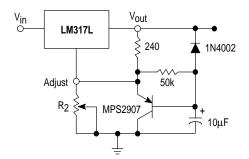
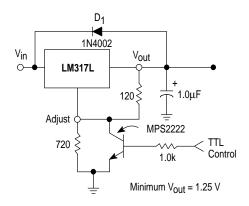
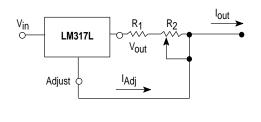
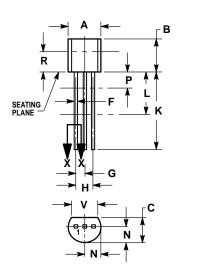




Figure 20. 5 V Electronic Shutdown Regulator

D₁ protects the device during an input short circuit.

Figure 22. Current Regulator


$$I_{outmax} = \left(\begin{array}{c} \frac{V_{ref}}{R_1} \end{array}\right) + I_{Adj} \cong \frac{1.25 \text{ V}}{R_1}$$

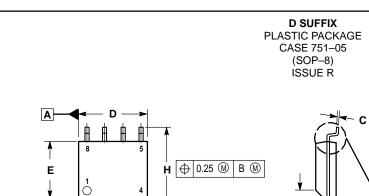
$$I_{outmax} = \left(\begin{array}{c} \frac{V_{ref}}{R_1 + R_2} \end{array}\right) + I_{Adj} \cong \frac{1.25 \text{ V}}{R_1 + R_2}$$

 $5.0 \text{ mA} < I_{out} < 100 \text{ mA}$

LM317L **OUTLINE DIMENSIONS**

Z SUFFIX PLASTIC PACKAGE CASE 29-04 **ISSUE AD**

- NOTES:


 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.

 4. DIMENSION F APPLIES BETWEEN P AND L. DIMENSION D AND J APPLY BETWEEN L AND K MINIMUM. LEAD DIMENSION IS UNCONTROLLED IN P AND REYOND DIMENSION IS UNCONTROLLED IN P AND REYOND DIMENSION IS UNCONTROLLED IN P AND REYOND DIMENSION KIMIMIM IM IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.022	0.41	0.55	
F	0.016	0.019	0.41	0.48	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
٧	0.135		3.43		

SECTION X-X

h x 45 °

SEATING PLANE

□ 0.10

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. DIMENSIONS ARE IN MILLIMETERS.

 3. DIMENSION D AND E DO NOT INCLUDE MOLD

- PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
- MAXIMUM MOLD PRO INUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	1.35	1.75	
A1	0.10	0.25	
В	0.35	0.49	
C	0.18	0.25	
D	4.80	5.00	
Е	3.80	4.00	
е	1.27 BSC		
Η	5.80	6.20	
h	0.25	0.50	
۲	0.40	1.25	
θ	0°	7 º	

B

||e||

В

⊕ 0.25 M C B S A S

LM317L NOTES

LM317L NOTES

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

