

Negative voltage regulators

Datasheet - production data

Features

- Output current up to 1.5 A
- Output voltages of 5; 8; 12; 15 V
- Thermal overload protection
- Short circuit protection
- Output transition SOA protection
- Output tolerance 2% (AC version) or 4% (C version) at 25°C

Description

The L79 series of three-terminal negative regulators is available in TO-220, TO-220FP and D²PAK packages and several fixed output voltages, making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation; furthermore, having the same voltage option as the L78 positive standard series, they are particularly suited for split power supplies. If adequate heat sinking is provided, they can deliver over 1.5 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

	Order codes						
TO-220 (single gauge)	TO-220 (dual gauge)	D²PAK	TO-220FP	Output voltages			
L7905ACV	L7905ACV-DG	L7905ACD2T-TR		- 5 V			
L7905CV	L7905CV-DG	L7905CD2T-TR	L7905CP	- 5 V			
L7908CV	L7908CV-DG			- 8 V			
L7912ACV	L7912ACV-DG			- 12 V			
L7912CV	L7912CV-DG	L7912CD2T-TR	L7912CP	- 12 V			
L7915ACV	L7915ACV-DG			- 15 V			
L7915CV	L7915CV-DG		L7915CP	- 15 V			

Table 1. Device summary

Contents

1	Diagram	3
2	Pin configuration	4
3	Maximum ratings	5
4	Test circuit	6
5	Electrical characteristics	7
6	Application information	4
7	Package mechanical data 16	6
8	Packaging mechanical data 28	5
9	Revision history	7

1 Diagram

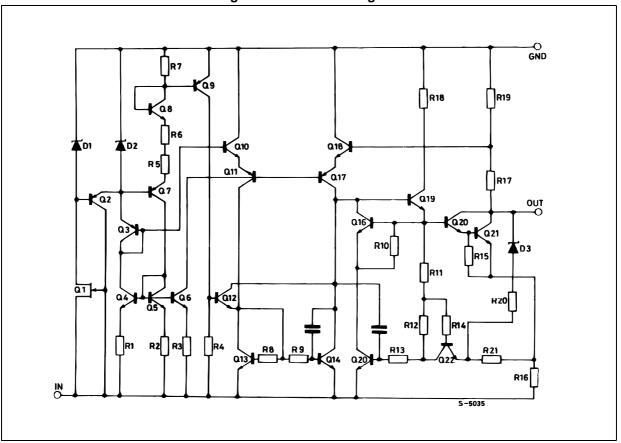
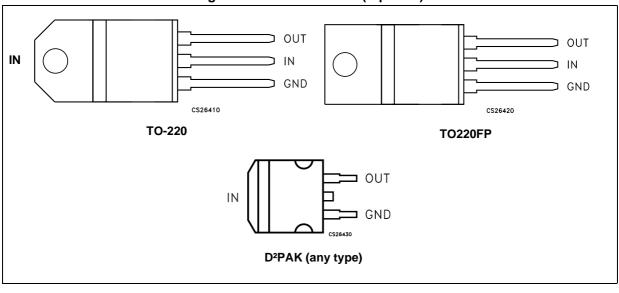



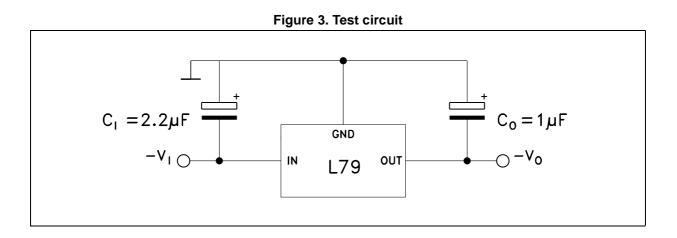
Figure 1. Schematic diagram

2 Pin configuration

3 Maximum ratings

Table 2. Absolute maximum	ratings
---------------------------	---------

Symbol	Parameter		Value	Unit
VI	DC input voltage		-35	V
Ι _Ο	Output current		Internally limited	
PD	Power dissipation		Internally limited	
T _{STG}	Storage temperature range		-65 to 150	°C
т	Operating junction temperature range	for L79xxC	0 to 150	°C
Т _{ОР}	Operating junction temperature range	for L79xxAC	0 to 125	C


Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Symbol	Parameter	D ² PAK	TO-220	TO-220FP	Unit
R _{thJC}	Thermal resistance junction-case	3	5	5	°C/W
R _{thJA}	Thermal resistance junction-ambient	62.5	50	60	°C/W

Table 3. Thermal data

4 Test circuit

5 Electrical characteristics

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -10 V, I_O = 500 mA, C_I = 2.2 $\mu F,$ C_O = 1 μF unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	$T_J = 25^{\circ}C$	-4.9	-5	-5.1	V	
V _O	Output voltage	I_{O} = -5 mA to -1 A, P_{O} \leq 15 W V_{I} = -8 to -20 V	-4.8	-5	-5.2	V	
$\Delta V_0^{(1)}$	Line regulation	$V_{I} = -7 \text{ to } -25 \text{ V}, \text{T}_{J} = 25^{\circ}\text{C}$			100	mV	
Δv0, ,	Line regulation	$V_{I} = -8 \text{ to } -12 \text{ V}, \text{ T}_{J} = 25^{\circ}\text{C}$			50	IIIV	
$\Delta V_0^{(1)}$	l a s d as av de tie a	$I_0 = 5 \text{ mA to } 1.5 \text{ A}, T_J = 25^{\circ}\text{C}$			100	- mV	
740. 1	Load regulation	$I_{O} = 250 \text{ to } 750 \text{ mA}, T_{J} = 25^{\circ}\text{C}$			50		
I _d	Quiescent current	$T_J = 25^{\circ}C$			3	mA	
41		$I_0 = 5 \text{ mA to 1 A}$			0.5	mA	
ΔI_d	Quiescent current change	V _I = -8 to -25 V			1.3	ША	
$\Delta V_{O} / \Delta T$	Output voltage drift	I _O = 5 mA		-0.4		mV/°C	
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_J = 25^{\circ}C$		100		μV	
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB	
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.4		V	
I _{sc}	Short circuit current			2.1		А	
I _{scp}	Short circuit peak current	$T_J = 25^{\circ}C$		2.5		А	

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -10 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	-4.8	-5	-5.2	V
Vo	Output voltage	I_{O} = -5 mA to -1 A, P_{O} \leq 15 W V_{I} = -8 to -20 V	-4.75	-5	-5.25	V
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = -7 \text{ to } -25 \text{ V}, \text{T}_{J} = 25^{\circ}\text{C}$			100	mV
Δνο. ,		$V_{I} = -8 \text{ to } -12 \text{ V}, \text{ T}_{J} = 25^{\circ}\text{C}$			50	
ΔV _O ⁽¹⁾		$I_0 = 5 \text{ mA to } 1.5 \text{ A}, T_J = 25^{\circ}\text{C}$			100	mV
Δνο. ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			50	
I _d	Quiescent current	$T_J = 25^{\circ}C$			3	mA
41	Quiescent current change	$I_0 = 5 \text{ mA to 1 A}$			0.5	mA
ΔI_d	Quiescent current change	V ₁ = -8 to -25 V			1.3	IIIA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-0.4		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_J = 25^{\circ}C$		100		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.4		V
I _{sc}	Short circuit current			2.1		А

Table 5. Electrical characteristics of L7905C

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -14 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	-7.7	-8	-8.3	V
V _O	Output voltage	I_{O} = -5 mA to -1 A, P_{O} \leq 15 W V_{I} = -11.5 to -23 V	-7.6	-8	-8.4	V
$\Delta V_0^{(1)}$	Line regulation	$V_{I} = -10.5 \text{ to } -25 \text{ V}, T_{J} = 25^{\circ}\text{C}$			160	mV
Δνο. ,	Line regulation	$V_{I} = -11$ to -17 V, $T_{J} = 25^{\circ}C$			80	IIIV
ΔV _O ⁽¹⁾		$I_0 = 5 \text{ mA to } 1.5 \text{ A}, T_J = 25^{\circ}\text{C}$			160	mV
Δνο. ,	Load regulation	I _O = 250 to 750 mA, T _J = 25°C			80	
I _d	Quiescent current	$T_{\rm J} = 25^{\circ}{\rm C}$			3	mA
41	Ouisseent surrent shores	$I_0 = 5 \text{ mA to 1 A}$			0.5	
ΔI_d	Quiescent current change	V _I = -11.5 to -25 V			1	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-0.6		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_J = 25^{\circ}C$		175		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.1		V
I _{sc}	Short circuit current			1.5		Α

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -19 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

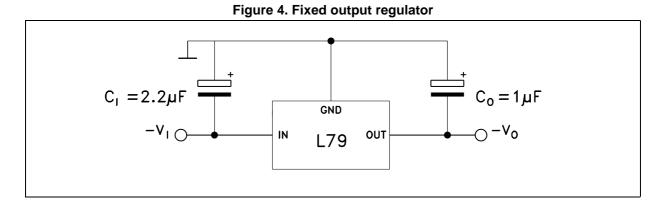
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	$T_J = 25^{\circ}C$	-11.75	-12	-12.25	V
Vo	Output voltage	I_O = -5 mA to -1 A, P_O \leq 15 W V_I = -15.5 to -27 V	-11.5	-12	-12.5	V
$\Delta V_{O}^{(1)}$		$V_{\rm I} = -14.5$ to -30 V, $T_{\rm J} = 25^{\circ}{\rm C}$			240	m)/
Δv _O ()	Line regulation	$V_{I} = -16 \text{ to } -22 \text{ V}, \text{ T}_{J} = 25^{\circ}\text{C}$			120	mV
$\Delta V_{O}^{(1)}$	Lood regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			240	- mV
Δv _O ()	Load regulation	$I_{O} = 250$ to 750 mA, $T_{J} = 25^{\circ}C$			120	
I _d	Quiescent current	$T_J = 25^{\circ}C$			3	mA
41		$I_{O} = 5 \text{ mA to } 1 \text{ A}$			0.5	
ΔI_d	Quiescent current change	V _I = -15 to -30 V			1	mA
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_J = 25^{\circ}C$		200		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, T_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.1		V
I _{sc}	Short circuit current			1.5		А
I _{scp}	Short circuit peak current	T _J = 25°C		2.5		А

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -19 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

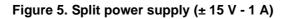
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	$T_J = 25^{\circ}C$	-11.5	-12	-12.5	V	
V _O	Output voltage	I_{O} = -5 mA to -1 A, P_{O} \leq 15 W V_{I} = -15.5 to -27 V	-11.4	-12	-12.6	V	
$\Delta V_0^{(1)}$	Line regulation	$V_{I} = -14.5 \text{ to } -30 \text{ V}, T_{J} = 25^{\circ}\text{C}$			240	mV	
Δνο()	Line regulation	$V_{I} = -16$ to -22 V, $T_{J} = 25^{\circ}C$			120	IIIV	
ΔV _O ⁽¹⁾	Load regulation	$I_0 = 5 \text{ mA to } 1.5 \text{ A}, T_J = 25^{\circ}\text{C}$			240	mV	
Δνο. ,		I _O = 250 to 750 mA, T _J = 25°C			120		
l _d	Quiescent current	$T_{\rm J} = 25^{\circ}{\rm C}$			3	mA	
41	Quiescent current change	$I_0 = 5 \text{ mA to 1 A}$			0.5	mA	
ΔI_d		V ₁ = -15 to -30 V			1	ШA	
$\Delta V_O / \Delta T$	Output voltage drift	I _O = 5 mA		-0.8		mV/°C	
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_J = 25^{\circ}C$		200		μV	
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120Hz	54	60		dB	
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.1		V	
I _{sc}	Short circuit current			1.5		Α	

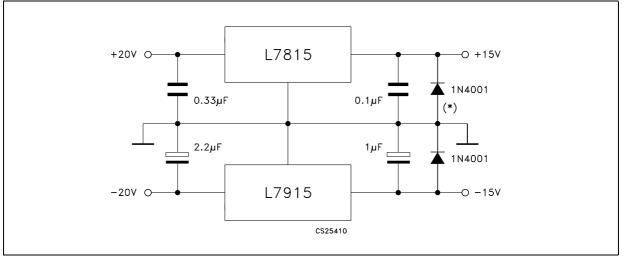
Refer to the test circuits, T_J = 0 to 125 °C, V_I = -23 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vo	Output voltage	T _J = 25°C	-14.7	-15	-15.3	V
Vo	Output voltage	I_O = -5 mA to -1 A, P_O \leq 15 W V_I = -18.5 to -30 V	-14.4	-15	-15.6	V
A) (1)		V _I = -17.5 to -30 V, T _J = 25°C			300	m)/
$\Delta V_{O}^{(1)}$	Line regulation	$V_{I} = -20$ to -26 V, $T_{J} = 25^{\circ}C$			150	mV
$\Delta V_{O}^{(1)}$	Lood regulation	$I_{O} = 5 \text{ mA to } 1.5 \text{ A}, T_{J} = 25^{\circ}\text{C}$			300	mV
$\Delta V_0^{(1)}$	Load regulation	$I_{O} = 250$ to 750 mA, $T_{J} = 25^{\circ}C$			150	
I _d	Quiescent current	$T_J = 25^{\circ}C$			3	mA
41	Quiescent current change	$I_{O} = 5 \text{ mA to } 1 \text{ A}$			0.5	- mA
ΔI_d		V _I = -18.5 to -30 V			1	
$\Delta V_{O} / \Delta T$	Output voltage drift	I _O = 5 mA		-0.9		mV/°C
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_J = 25^{\circ}C$		250		μV
SVR	Supply voltage rejection	ΔV _I = 10 V, f = 120 Hz	54	60		dB
V _d	Dropout voltage	I_{O} = 1 A, T_{J} = 25°C, ΔV_{O} = 100 mV		1.1		V
I _{sc}	Short circuit current			1.3		А
I _{scp}	Short circuit peak current	T _J = 25°C		2.5		А


Table 9. Electrical characteristics of L7915AC

Refer to the test circuits, T_J = 0 to 125 °C, V_I = -23 V, I_O = 500 mA, C_I = 2.2 μ F, C_O = 1 μ F unless otherwise specified.


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vo	Output voltage	$T_{\rm J} = 25^{\circ}{\rm C}$	-14.4	-15	-15.6	V	
V _O	Output voltage	I_{O} = -5 mA to -1 A, P_{O} \leq 15 W V_{I} = -18.5 to -30 V	-14.3	-15	-15.7	V	
$\Delta V_0^{(1)}$	Line regulation	$V_{I} = -17.5$ to -30 V, $T_{J} = 25^{\circ}C$			300		
Δv ₀ ()	Line regulation	$V_{I} = -20$ to -26 V, $T_{J} = 25^{\circ}C$			150	mV	
$\Delta V_0^{(1)}$	Load regulation	$I_0 = 5 \text{ mA to } 1.5 \text{ A}, T_J = 25^{\circ}\text{C}$			300	mV	
ΔνΟ()		$I_{O} = 250$ to 750 mA, $T_{J} = 25^{\circ}C$			150		
I _d	Quiescent current	$T_{\rm J} = 25^{\circ}{\rm C}$			3	mA	
41	Quiescent current change	$I_0 = 5 \text{ mA to 1 A}$			0.5	mA	
ΔI_d		V _I = -18.5 to -30 V			1	IIIA	
$\Delta V_{O} / \Delta T$	Output voltage drift	I _O = 5 mA		-0.9		mV/°C	
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_J = 25^{\circ}C$		250		μV	
SVR	Supply voltage rejection	$\Delta V_{I} = 10 \text{ V}, \text{ f} = 120 \text{ Hz}$	54	60		dB	
V _d	Dropout voltage	$I_{O} = 1 \text{ A}, \text{ T}_{J} = 25^{\circ}\text{C}, \Delta V_{O} = 100 \text{ mV}$		1.1		V	
I _{sc}	Short circuit current			1.3		Α	



6 Application information

Note: C_1 is required for stability. For value given, capacitor must be solid tantalum. If aluminium electrolytic are used, at least ten times value should be selected. C_0 is required if regulator is located an appreciable distance from power supply filter. To improve transient response. If large capacitors are used, a high current diode from input to output (1N4001 or similar) should be introduced to protect the device from momentary input short circuit.

(*) Against potential latch-up problems.

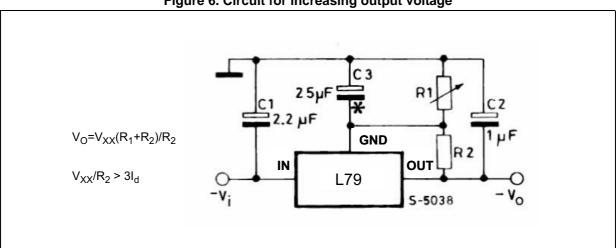
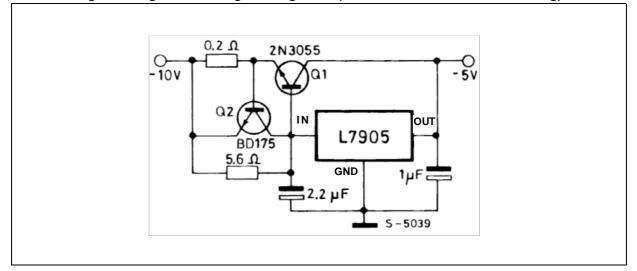



Figure 6. Circuit for increasing output voltage

C3 Optional for improved transient response and ripple rejection.

Figure 7. High current negative regulator (- 5 V / 4 A with 5 A current limiting)

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

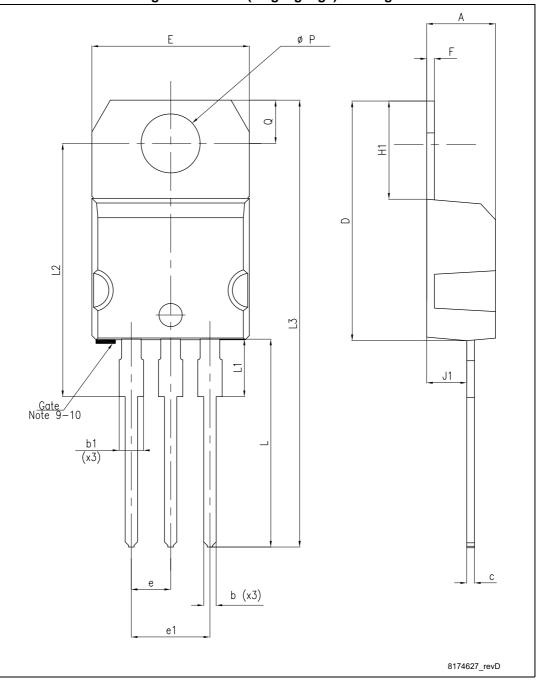
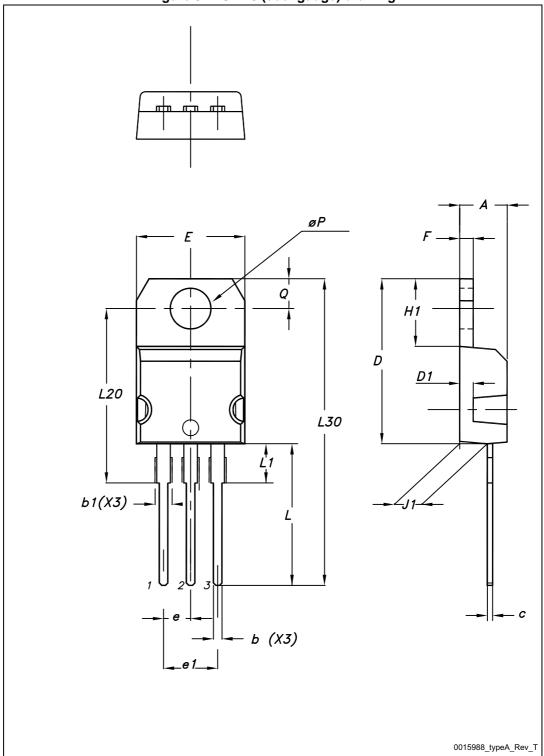


Figure 8. TO-220 (single gauge) drawing

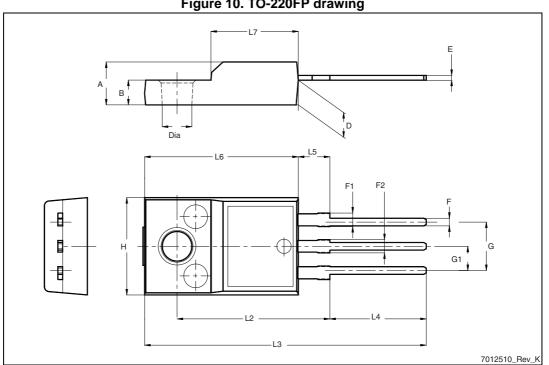


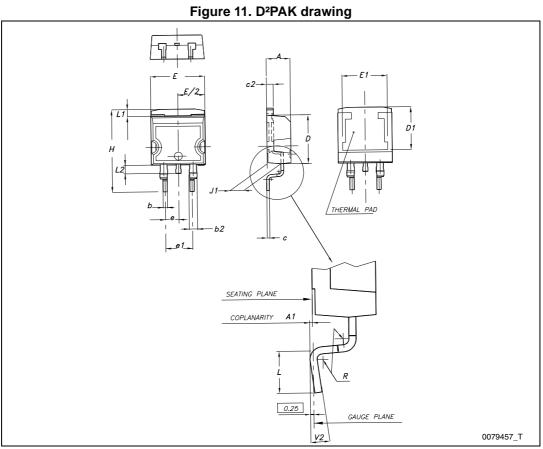
Dim	mm					
Dim. —	Min.	Тур.	Max.			
А	4.40		4.60			
b	0.61		0.88			
b1	1.14		1.70			
с	0.48		0.70			
D	15.25		15.75			
E	10		10.40			
е	2.40		2.70			
e1	4.95		5.15			
F	0.51		0.60			
H1	6.20		6.60			
J1	2.40		2.72			
L	13		14			
L1	3.50		3.93			
L20		16.40				
L30		28.90				
ØР	3.75		3.85			
Q	2.65		2.95			

Table 11. TO-220 (single gauge) mechanical data

		mm	
Dim. —	Min.	Тур.	Max.
A	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
с	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØР	3.75		3.85
Q	2.65		2.95

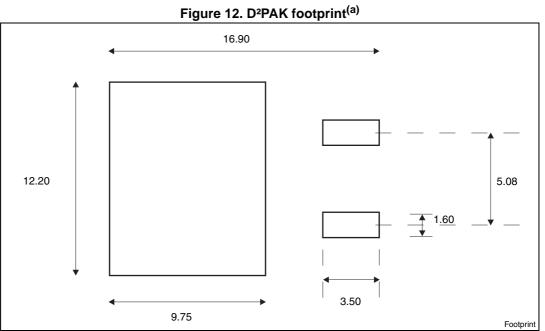
Table 12. TO-220 (dual gauge) mechanical data




Figure 10. TO-220FP drawing

Dim.	mm					
Dini.	Min.	Тур.	Max.			
A	4.4		4.6			
В	2.5		2.7			
D	2.5		2.75			
E	0.45		0.7			
F	0.75		1			
F1	1.15		1.70			
F2	1.15		1.70			
G	4.95		5.2			
G1	2.4		2.7			
Н	10		10.4			
L2		16				
L3	28.6		30.6			
L4	9.8		10.6			
L5	2.9		3.6			
L6	15.9		16.4			
L7	9		9.3			
Dia	3		3.2			

Table 13. TO-220FP mechanical data



Dia		mm	
Dim. —	Min.	Тур.	Max.
А	4.40		4.60
A1	0.03		0.23
b	0.70		0.93
b2	1.14		1.70
С	0.45		0.60
c2	1.23		1.36
D	8.95		9.35
D1	7.50		
E	10		10.40
E1	8.50		
е		2.54	
e1	4.88		5.28
Н	15		15.85
J1	2.49		2.69
L	2.29		2.79
L1	1.27		1.40
L2	1.30		1.75
R		0.4	
V2	0°		8°

Table 14. D²PAK mechanical data

a. All dimensions are in millimeters.

DocID2149 Rev 22

L79

8 Packaging mechanical data

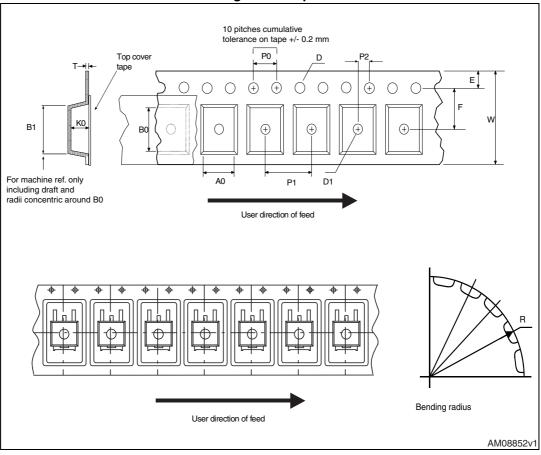
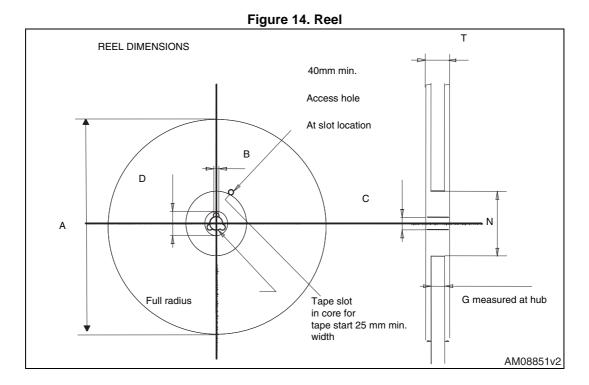



Figure 13. Tape

	Таре			Reel		
mm				mm		
Dim. —	Min.	Max.	— Dim. –	Min.	Max.	
A0	10.5	10.7	A		330	
B0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
E	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1		Base qty	1000	
P2	1.9	2.1		Bulk qty	1000	
R	50				•	
Т	0.25	0.35				
W	23.7	24.3				

Table 15. D²PAK tape and reel mechanical data

9 on

9 Revision history

18

19

20

21

22

page 1.

Minor text changes.

Revision	Changes
9	Order codes updated Table 3.
10	Add new order codes (TO-220 E Type) on Table 3.
11	D ² PAK mechanical data updated and add footprint data.
12	Order codes updated.
13	Modified: Figure 3, Figure 4, Figure 6 and Figure 7.
14	Modified: Table 1.
15	Modified: Table 1 on page 1.
16	Modified: Table 1 on page 1.
17	Modified: Table 11 on page 14, added: Figure 8 on page 16, Figure page 17, Figure 10 and Figure 11 on page 18.
	9 10 11 12 13 14 15 16

Modified: V_I parameter Table 2 on page 5.

Modified: R_{thJC} value for TO-220 Table 3 on page 5.

Added: order codes L7908CV-DG *Table 1 on page 1*. Part numbers L79xxC and L79xxAC changed to L79. Updated the features and the description in cover page.

information, Section 7: Package mechanical data. Added Section 8: Packaging mechanical data.

Added: order codes L7905CV-DG, L7912CV-DG and L7915CV-DG Table 1 on

Updated Table 1: Device summary, Section 3: Maximum ratings, Section 4:

Test circuit, Section 5: Electrical characteristics, Section 6: Application

Table 16.	Document	revision	history
-----------	----------	----------	---------

26-May-2010

12-Nov-2010

18-Nov-2011

15-May-2012

04-Jun-2014

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

28/28

DocID2149 Rev 22

